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ABSTRACT Microdialysis experiments in rodents indicate that ethanol promotes
dopamine release predominantly in the nucleus accumbens, a phenomenon that is
implicated in the reinforcing effects of drugs of abuse. The aim of the present study was
to test the hypothesis in humans that an oral dose of ethanol would lead to dopamine
release in the ventral striatum, including the nucleus accumbens. Six healthy subjects
underwent two [11C]raclopride PET scans following either alcohol (1 ml/kg) in orange
juice or orange juice alone. Subjective mood changes, heart rate, and blood-alcohol levels
were monitored throughout the procedure. Personality traits were evaluated using the
tridimensional personality questionnaire. PET images were co-registered with MRI and
transformed into stereotaxic space. Statistical parametric maps of [11C]raclopride bind-
ing potential change were generated. There was a significant reduction in [11C]raclo-
pride binding potential bilaterally in the ventral striatum/nucleus accumbens in the
alcohol condition compared to the orange juice condition, indicative of increased extra-
cellular dopamine. Moreover, the magnitude of the change in [11C]raclopride binding
correlated with the alcohol-induced increase in heart rate, which is thought to be a
marker of the psychostimulant effects of the drug, and with the personality dimension
of impulsiveness. The present study is the first report that, in humans, alcohol promotes
dopamine release in the brain, with a preferential effect in the ventral striatum. These
findings support the hypothesis that mesolimbic dopamine activation is a common
property of abused substances, possibly mediating their reinforcing effects. Synapse 49:
226–231, 2003. © 2003 Wiley-Liss, Inc.

INTRODUCTION

Addiction is thought to result in large part from the
reinforcing properties of drugs of abuse on brain re-
ward systems, and in particular on mesolimbic dopa-
mine (Koob et al., 1998; Wise, 1996). Microdialysis
studies in rats show that ethanol and other drugs of
abuse, such as opiates, nicotine, amphetamine, and
cocaine, acutely increase extracellular dopamine levels
predominantly in the nucleus accumbens (NAc) (Di
Chiara and Imperato, 1988). The role of NAc dopamine
in alcohol self-administration is further supported by
reports of changes in consumption following alterations
in mesolimbic dopamine neurotransmission (Rassnick
et al., 1993; Samson et al., 1993; Nowak et al., 2000),
ethanol self-administration into the ventral tegmental
area (Gatto et al., 1994), and alcohol withdrawal-in-
duced reductions in both dopamine neuron firing and
NAc extracellular dopamine concentration (Rossetti et

al., 1992; Diana et al., 1992) that are reversed by eth-
anol administration (Weiss et al., 1996). Alcohol is
widely abused by humans; however, no studies have
directly investigated the effect of alcohol consumption
on the dopamine system. We now present, for the first
time in humans, evidence that alcohol consumed orally
promotes dopamine release specifically in the NAc.

We measured dopamine release in response to a sin-
gle-dose administration of alcohol using positron emis-
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sion tomography (PET) and the dopamine receptor li-
gand [11C]raclopride. We used a two-scan method
based on evidence in primates, including combined
PET microdialysis studies, that the binding of benz-
amides such as [11C]raclopride is sensitive and propor-
tional to extracellular dopamine concentration in the
striatum (Endres et al., 1997; Ginovart et al., 1997;
Hartvig et al., 1997; Laruelle et al., 1997; Laruelle,
2000). This approach has been used in humans to mea-
sure the dopamine response to psychostimulants (Car-
son et al., 1997; Schlaepfer et al., 1997; Volkow et al.,
2001) and behavioral tasks (Koepp et al., 1998). Three
recent PET studies have also shown that dopamine
release following amphetamine occurs mostly in the
ventral striatum and that the amount of dopamine
released correlates with self-reported behavioral mea-
sures of euphoria or drug wanting (Drevets et al., 2001;
Leyton et al., 2002; Martinez et al., 2003).

MATERIALS AND METHODS

Seven healthy male nonalcoholic moderate drinkers
(brief Michigan Alcoholism Screening Test, Pokorny et
al., 1972), age 22 (�0.6), were recruited from an exis-
tent longitudinal cohort (Tremblay et al., 1994). All
subjects who participated had experienced the alcohol
dose administered in this study at least twice in a
laboratory setting. Data from one of the seven subjects
had to be excluded due to excessive motion during the
scan. All subjects were free of active or past medical or
psychiatric illness. Subjects fasted and abstained from
caffeine or tobacco for a minimum of 4 h before each
test session. Five of the six subjects were nonsmokers
and one was a light smoker (1–2 cigarettes per day).
They were also asked to refrain from taking drugs for 7
days and alcohol for 24 h prior to each experimental
day. Before each scanning session, subjects underwent
screening for drugs of abuse (Triage Panel for Drugs of
Abuse, Biosite Diagnostics, San Diego, CA) including
alcohol (Alcosensor III intoxicometer, Thomas Instru-
ments, Montreal, QC). All subjects read and signed a
consent form approved by the Research and Ethics
Committee of the Montreal Neurological Institute.

Subjects participated in two [11C]raclopride PET
scans after consumption of alcohol in orange juice or
orange juice alone (Fig. 1). Subjects were only told
about drink content (alcohol or orange juice alone) at
the beginning of the session, and they did not come into
contact with the drink until the time of consumption.
PET data acquisition was performed at the same time
of day (between 14:00 and 16:00) on separate days, 1
week apart, and counterbalanced for order of adminis-
tration of alcohol (three out of six received alcohol on
the first day, randomly chosen). Prior to scanning, a
venous catheter was inserted in the subject’s left arm.
Oral consumption of alcohol (1 ml/kg of 95% USP alco-
hol over 15 min) or alcohol-free mixture started 30 min
prior to tracer injection. The dose of alcohol was se-

lected based on previous behavioral experiments show-
ing that it was intoxicating but without significant
adverse effects in this population. At the end of con-
sumption, subjects were immediately positioned in the
scanner and a 12-min transmission scan was acquired
using a 68Ge source for the purpose of attenuation
correction. Following the transmission scan, and 15
min after the end of alcohol consumption, [11C]raclo-
pride 10 mCi was injected as a bolus into the antecu-
bital vein, after which PET dynamic acquisition (63
slices, 26 time frames of 60 min total duration) was
performed.

Subjects were scanned on the CTI/Siemens ECAT
HR� PET camera with lead septa removed, with in-
trinsic resolution 4.8 � 4.8 � 5.6 mm FWHM. Blood
samples, for plasma alcohol measurements, were with-
drawn from the venous cannula before the initiation of
drinking, at tracer injection (15 min after finishing
drinking), and every 15 min thereafter. Subjective ef-
fects of alcohol, assessed with the Subjective High As-
sessment Scale (SHAS, Judd et al., 1977; Schuckit et
al., 1997), and heart rate were measured prior to alco-
hol consumption and throughout the procedure. The
SHAS is a visual analog scale that assesses sensations
such as feeling high, drunk, and drowsy. In a separate
session, prior to the first scan, all subjects completed
the tridimensional personality questionnaire (TPQ;
Cloninger et al., 1991). This test assesses three dimen-
sions of personality, including novelty seeking (impul-
sive, excitable, exploratory temperament), which is
thought to depend in significant part on activity in the
dopamine pathways (Cloninger, 1994). For the purpose
of anatomical co-registration, subjects also underwent
a 1 � 1 � 1 mm anatomical T1-weighted MRI of the
whole brain using a gradient echo pulse sequence
(TR � 9.7 ms, TE � 4 ms, flip angle � 12°, FOV � 250,
matrix � 256 � 256).

PET frames were summed across time, co-registered
with the corresponding MRI (Woods et al., 1993), and
transformed into standardized stereotaxic space (Ta-
lairach and Tournoux, 1988) by means of automated
feature-matching to the MNI template (Collins et al.,
1994). Voxelwise [11C]raclopride binding potential (BP)

Fig. 1. Study design. The vertical arrows indicate the time points
of blood sampling, subjective mood assessments, and physiological
measurements.
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was calculated using a simplified reference tissue
method (Lammertsma et al., 1996; Gunn et al., 1997) to
generate statistical parametric images of the change in
binding (Aston et al., 2000). BP values for each subject
were extracted from regions of interest (ROI) manu-
ally drawn on the co-registered MRI on the left and
right caudate (drawn on transverse slices at Ta-
lairach-space z coordinate from �2 to �15 mm), pu-
tamen (�2 to �10 mm), ventral putamen (– 8 to – 4
mm), NAc (– 8 to – 4 mm), and cerebellum, which was
used as the reference region. BP values extracted
from ROI during alcohol and control scans were an-
alyzed using a three-way ANOVA for dependent sam-
ples [Treatment � ROI � hemisphere]. Sphericity
was assessed with the Mauchly test and, when indi-
cated, corrections were made with Greenhouse-Gei-
sser adjustments. When appropriate, least signifi-
cant difference t-tests, Bonferroni corrected, were
applied to determine the significance of regional dif-
ferences in BP between the alcohol and orange juice
conditions. Heart rate during the ascending part of
the blood alcohol curve was compared to a baseline
taken just prior to the study session. Since one sub-
ject exhibited a change in heart rate during the test

session with orange juice that was greater than 2 SD
from the sample mean, magnitude of heart rate
change was analyzed with the nonparametric Wil-
coxon matched pairs test. Maximum change in SHAS
rating from baseline taken on the same day (�max

[SHAS]) was used to evaluate the subjective effects
of alcohol and control drinks. A t-test for paired
samples was used to determine the difference be-
tween �max [SHAS] for the alcohol condition and �max

[SHAS] for the control. Stepwise linear regression
analysis was used to examine whether percent
change in ROI BP could be predicted by changes in
heart rate, change in SHAS scores, or TPQ person-
ality ratings.

RESULTS

Screening for drugs of abuse was positive for only one
subject (THC and trace cocaine prior to both scan con-
ditions). Therefore, two different analyses were carried
out, one excluding the data from this subject. In both
cases, receptor parametric mapping identified signifi-
cant reductions in [11C]raclopride BP in bilateral ven-
tral striatum in the alcohol compared to the alcohol-
free condition (Fig. 2). In the statistically generated

Fig. 2. Statistical t-map of the
change in [11C]raclopride BP induced
by an acute oral dose of alcohol (1 ml/
kg) in healthy volunteers (n � 6). Color
clusters superimposed on the average
MRI from all subjects depict a signifi-
cant change in BP in the ventral
striatum.
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t-map, [11C]raclopride BP values were 16.8 � 16.3%
lower on the test day with alcohol, compared to orange
juice (t(5) � 2.54, P � 0.05).

Analyses of [11C]raclopride BP values in the a priori
defined ROI supported the receptor parametric map-
ping analyses (Fig. 3). A treatment � ROI � hemi-
sphere ANOVA yielded a main effect of ROI (F(3,15) �
42.55, P � 0.001, Greenhouse-Geisser corrected) and a
treatment � ROI interaction (F(3,15) � 3.21, P � 0.05).
Bonferroni-corrected pairwise comparisons confirmed
that alcohol significantly reduced BP in the NAc (P �
0.003) and ventral putamen (P � 0.001) but not in the
caudate (P � 0.98) or putamen (P � 0.84). The percent
change in [11C]raclopride BP also varied with ROI
(F(3,15) � 13,50, P � 0.001). In both the nucleus ac-
cumbens (15.0 � 15.9%) and the ventral putamen
(13.7 � 16.4%), the percent decreases in [11C]raclopride
BP were greater than those seen in either the putamen
(5.2 � 17.5%) or caudate nucleus (4.0 � 16.4%) (P �
0.01).

The blood alcohol level reached a mean peak of 18.10
(�1.4) mmol/L (0.0833 gm %) at 30 min after drinking.
During the expected ascending phase of the blood alco-
hol curve (15–30 min post drink) alcohol consumption
resulted in small but consistent increases in heart rate
(5.47 � 6 beats/min; t(5) � 1.85, P � 0.12; 6/6 subjects
higher during alcohol test, Wilcoxon matched pairs
test, z � 2.20; P � 0.028) and self-reported feelings of
“high” and “drunkenness” (paired t-test, �max [SHAS]
alcohol vs. �max [SHAS] orange juice, P � 0.01). A
stepwise linear regression showed that impulsiveness,
one of the subscales on the novelty-seeking dimension
of the TPQ, and heart rate increase recorded at 30 min
(i.e., during the ascending phase of the blood alcohol
curve) were the only predictors of BP change in the
ventral striatum (r � 0.985; P � 0.005). Neither the
subjective intoxication measures nor the peak blood
alcohol level correlated with the change in [11C]raclo-
pride BP in any region.

DISCUSSION

The observed reduction in [11C]raclopride BP con-
fined to the ventral part of the striatum is indicative of
dopamine release specifically in the NAc and ventral
putamen in response to alcohol in humans. The ventral
specificity of the effect is consistent with three other
[11C]raclopride PET studies, in which amphetamine
was found to preferentially induce dopamine release in
the ventral striatum in humans (Drevets et al., 2001;
Leyton et al., 2002; Martinez et al., 2003). In animals,
in vivo microdialysis studies have also shown a propen-
sity for alcohol to induce dopamine release in the ven-
tral striatum. Di Chiara and Imperato (1988) found
that ethanol at rewarding doses had an almost 10-fold
greater effect on dopamine release in the NAc than in
the dorsal caudate. Moreover, low doses of ethanol
produce a dose-dependent increase in the firing rate of
A10 dopamine neurons in the ventral tegmental area,
which project to the ventral striatum (Gessa et al.,
1985). Activation of A9 dopamine neurons, which
project to the dorsal striatum, only occurs at 5-fold
greater ethanol doses.

While a direct pharmacological effect of alcohol could
account for our findings, it is possible that conditioned
cues and anticipation also played a role in enhancing
dopamine release. In humans, exposure to the odor of
alcohol leads to autonomic nervous system activity
(Stormark et al., 1995), and alcohol-related cues have
been shown to cause dopamine release in rats previ-
ously trained to self-administer alcohol (Katner and
Weiss, 1999). The subjects in our study only learned
whether they would receive alcohol or not when they
arrived at the lab and they were kept away from the
drinks until the start of consumption, thus limiting the
potential influence of anticipation in this experiment.

The dorsal and ventral striatum can be separated
functionally and anatomically (Moore and Bloom, 1978;
Heimer et al., 1982; Haber et al., 2000). Their dopa-
mine innervations originate in different cell groups in
the midbrain and their cortical connections likely ac-
count for their different functional roles. The ventral
striatum, including the NAc and ventral putamen, be-
long to the “limbic” cortico-striatal loop that includes
the amygdala, hippocampus, orbito-frontal cortex, and
cingulate cortex, structures involved in emotional be-
havior and reward processing. There is much evidence
for specific involvement of ventral striatal, or mesolim-
bic, dopamine in the reinforcing effects of addictive
drugs (Wise, 1996; Koob et al., 1998). It is thought to
mediate associative learning, whereby drug-related
cues acquire incentive value (Di Chiara et al., 1999).
Conditioned place preference, a laboratory test of con-
ditioned incentive learning, is abolished by lesions or
dopamine blockade of the ventral but not dorsal stria-
tum (Everitt et al., 1991; Hiroi and White, 1991). Our
finding of dopamine release confined to the ventral
striatum after oral ingestion of an intoxicating dose of

Fig. 3. Mean [11C]raclopride BP in the alcohol and control (orange
juice) conditions. The data are extracted from manually drawn ROI on
each subject’s MRI. Bonferroni corrected pairwise comparisons: †Dif-
ference between alcohol and control, P � 0.001. Error bars represent
the SEM.
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alcohol may therefore account at least in part for its
addictive properties in humans.

Ethanol most likely acts on dopamine neurons indi-
rectly (Yim et al., 1998). It potentiates GABA-A recep-
tor function (Weiner et al., 1994) to cause inhibition of
GABAergic interneurons in the substantia nigra re-
ticulata (Mereu and Gessa, 1985), which leads to dis-
inhibition and increased burst firing of dopamine neu-
rons (Grace and Bunney, 1985). As stated above, A10
neurons projecting to the ventral striatum appear to be
more sensitive to these systemic effects of ethanol than
A9 dopamine neurons projecting to the dorsal striatum
(Gessa et al., 1985). Opioid peptides may also be in-
volved in the dopamine releasing actions of ethanol
(Acquas et al., 1993; Benjamin et al., 1993; Gonzales et
al., 1998).

The level of dopaminergic responsiveness in the NAc
has been proposed as a marker of individual vulnera-
bility to drug addiction. Numerous studies in rats have
linked the propensity to self-administer drugs to en-
hanced dopamine release in the NAc in response to
psychostimulants or stress (e.g., Piazza et al., 1991;
Hooks et al., 1992; Zocchi et al., 1998; Marinelli and
White, 2000), or ethanol (Weiss et al., 1993). In light of
these studies, our finding of a correlation between the
change in [11C]raclopride BP in response to alcohol and
two variables, the alcohol-induced increase in heart
rate and the personality trait of impulsiveness, is in-
teresting.

In humans, cardiac response has been hypothesized
to be an index of the psychostimulant properties of
alcohol and of dopamine activation (Conrod et al.,
2001), and therefore a marker of vulnerability to ad-
diction. Our findings, although in a small number of
subjects, lend support to this theory. Moreover, the
personality trait of novelty-seeking, of which impul-
siveness is one component, has also been linked to both
dopamine function (Cloninger, 1994) and to addictive
propensity. High scores on the novelty-seeking scale of
the TPQ predict later alcoholism (Cloninger et al.,
1988) as well as relapse-rate in detoxified alcoholics
(Meszaros et al., 1999). Interestingly, in a previous
PET study we found that amphetamine-induced dopa-
mine release also targeted the NAc and correlated with
novelty-seeking scores (Leyton et al., 2002).

In the current study, we found no correlation be-
tween alcohol-induced NAc dopamine release and sub-
jective measures of intoxication. Previously, we simi-
larly found no correlation between amphetamine-
induced dopamine release and behavioral effects such
as euphoria and excitation (Leyton et al., 2002). The
association between a drug’s euphorigenic quality and
dopamine release has not been established in humans;
similarly, in rats the behavioral significance of in-
creased DA remains a subject of debate. Our failure to
find a correlation between subjective effects and DA
release likely reflects the fact that alcohol acts on mul-

tiple neurotransmitter systems. In particular, the
SHAS mostly reflects the sedative effects of alcohol
(Conrod et al., 2001), which are probably not mediated
by dopamine.

In conclusion, we showed that alcohol consumed by
mouth in intoxicating doses promotes dopamine re-
lease in the ventral striatum. The observed relation-
ship between the magnitude of change in [11C]raclo-
pride BP, personality, and heart rate increase suggests
that the paradigm we have developed could be used to
investigate the factors that lead to vulnerability for
alcohol dependence.
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