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Analyzing Developmental Trajectories of Distinct but Related
Behaviors: A Group-Based Method
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This article presents a group-based method to jointly estimate developmental tra-
Jjectories of 2 distinct but theoretically related measurement series. The method will
aid the analysis of comorbidity and heterotypic continuity. Three key outputs of the
model are (a) for both measurement series, the form of the trajectory of distinctive
subpopulations; (b) the probability of membership in each such trajectory group;
and (c) the joint probability of membership in trajectory groups across behaviors.
This final output offers 2 novel features. First, the joint probabilities can charac-
terize the linkage in the developmental course of distinct but related behaviors.
Second, the joint probabilities can measure differences within the population in the
magnitude of this linkage. Two examples are presented to illustrate the application

of the method.

Two prominent themes in developmental psychol-
ogy, developmental psychopathology, and develop-
mental criminology are comorbidity and heterotypic
continuity. Comorbidity refers to the contemporane-
ous occurrence of two or more undesirable conditions,
such as conduct disorder and hyperactivity during
childhood (Angold, Costello, & Erkanli, 1999; Nagin
& Tremblay, 1999) or anxiety and depression in
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adulthood (Kessler et al., 1994). Heterotypic continu-
ity is the manifestation over time of a latent individual
trait in different but analogous behaviors (Caspi,
1998; Kagan, 1969). For example, a propensity for
violence may reveal itself as kicking and biting sib-
lings during early childhood, gang fighting during
adolescence, and spouse abuse during adulthood. The
form and target of the aggression is different, but the
constant is physical violence. Due to the changing
form of the manifestation, use of the same measure-
ment scale at different stages of life is inappropriate
for capturing such a tendency.

Comorbidity and heterotypic continuity are typi-
cally represented by a single summary statistic, usu-
ally a correlation or odds ratio, that measures the co-
occurrence of the two behaviors or symptoms of
interest (e.g., hyperactivity and conduct disorder at
age 6) or, alternatively, relates the two distinct behav-
iors measured at different life stages (e.g., physical
aggression at age 5 and violent delinquency at age
15). Examples of research using this conventional
measurement strategy in comorbidity analysis include
work by Costello et al. (1988); Fergusson, Horwood,
and Lynskey (1993); Haapasalo, Tremblay, Boulerice,
and Vitaro (in press); Lewinsohn, Hops, Roberts, See-
ley, and Andrews (1993); and Valez, Johnson, and
Cohen (1989) and in heterotypic continuity analysis
include Backteman and Magnusson (1981); Caspi
(1998): Farrington (1990); Huesmann, Eron, Lefkow-
1tz, and Walder (1984); Loeber and LeBlanc (1990):
and Olweus (1979).
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Figure 1 depicts the essence of the data summary
problem in such analyses. Figure 1A characterizes the
conventional approach to summarizing the co-
occurrence of two behaviors. For a comorbidity
analysis, up to T summary measures of association
can be computed—one for each of the T measurement
periods. For example, if series X and Y, respectively,
measured depression and anxiety over T periods, up to
T correlation coefficients could be computed to rep-
resent comorbidity for each period. For heterotypic
continuity analysis, the combinations are potentially
even larger because each of the T measurements of
behavior X can be related to any of the K measure-
ments of behavior Y from period T onward.

The conventional approach to measuring behavior-
al overlap and stability suffers from several important
limitations. Most important, it makes inefficient use
of longitudinal data because measures of association
only use two assessment periods. This is especially

problematic in light of the encrmous cost of conduct-
ing longitudinal studies. Also, it is paradoxical be-
cause a key rationale for tracking individuals for more
than two assessment periods is to provide the capacity
to trace more than the linear change in the develop-
mental course, yet this capacity is greatly dissipated
by conventional two-period-based summary statistics
for measuring comorbidity and heterotypic continuity.
Second, the customary interpretation of a summary
statistic is that its magnitude applies equally to all
individuals within the population under study. For ex-
ample, suppose the correlation between involvement
in antisocial behavior at ages 8 and 14 was found to be
0.6. Most commonly, this correlation is interpreted as
applying to all population members. However, there is
a more complicated—and probably more realistic—
alternative: It is an average correlation calculated over
heterogeneous subpopulations. For some subpopula-
tions, there may be very little association, whereas for
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Figure I. Measuring comorbidity and heterotypic continuity. A: Conventional approach. B: Joint trajectory approach.



20 NAGIN AND TREMBLAY

other subpopulations, the association may be much
larger (e.g.. Magnusson & Bergman, 1990; Pulkkinen
& Tremblay, 1992).

Two other limitations of the conventional approach
are directly related to the use of correlation coeffi-
cients. The first is that the correlation’s magnitude is
not readily interpretable. For example, what does a
correlation of +0.6 imply about the proportion of in-
dividuals who exhibit behavioral continuity compared
to the proportion of individuals who exhibit behav-
ioral change? The second limitation is that the corre-
lation’s size can be quite sensitive to the inclusion of
outlier data from highly skewed distributions, such as
those often encountered in research on mental health
problems, crime, and antisocial behavior (Moffitt,
1993).

In this article, we develop and demonstrate a sta-
tistical model that relates the entire longitudinal
course of the two behaviors of interest. The essence of
the approach is depicted in Figure 1B. It aims to relate
all measurements of the two behaviors of interest in a
single summary statistical model. The model is a gen-
eralization of a group-based method described in
Nagin (1999) for identifying distinctive groupings of
individual-level trajectories within the population.
Such trajectory groups describe the course of a be-
havior over age or time and might include “increas-
ers,” “decreasers,” and ‘‘no-changers.” The general-
ization provides the capacity for the joint estimation
of trajectory models for two distinct but theoretically
related measurement series.

The three key outputs of the joint model are illus-
trated in Figure 2 and Table 1. The table and figure
contain examples of output from an analysis, to be
developed in detail here, which examines the comor-
bidity of hyperactivity and physical aggression from
ages 6 to 15 years in a large sample of boys from
Montreal, Canada. One output is the identification of
the optimal number of trajectory groups for each mea-
surement series. Figure 2 depicts the form of the tra-
jectory groups identified for these two externalizing
behaviors. For each behavior, a four-group model was
found to be optimal. A second key output is the prob-
ability of membership in each trajectory group. These
probabilities are displayed in the first part of Table 1.
For example, 3.9% of the population is estimated to
belong to the chronic physical aggression trajectory
group and 10.2% to a counterpart hyperactivity group.
The third key output is the joint probability of mem-
bership in trajectory groups across behaviors. These
probabilities are displayed in the second. third, and
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Figure 2. A: Trajectories of physical aggression: Ages 6 to
15. B: Trajectories of hyperactivity: Ages 6 to 5.

fourth parts of Table 1. For example, the estimated
probability of belonging to the chronic physical ag-
gression trajectory group given membership in the
counterpart chronic hyperactivity group is .275 (sec-
ond part of Table 1), whereas the converse conditional
probability estimated is much higher, .722 (third part
of Table 1). Finally, the joint probability of belonging
to both chronic trajectory groups is .011 (fourth part
of Table 1). These probabilities, each of which is
important in its own right, provide the capacity to
characterize the linkage in the developmental course
of distinct but related behaviors.

The joint trajectory model advances conventional
approaches to measuring comorbidity or heterotypic
continuity by providing the capability to examine the
linkage between the dynamic unfolding of the two
behaviors over the entire period of observation. Thus,
it makes use of all the longitudinal measurements of
the behaviors of interest. In addition. it captures popu-
lation differences in the strength and form of the co-
morbidity or heterotypic continuity.

Model

This section is intended to provide a conceptual
description of the joint trajectory model. A detailed
derivation of the likelihood function that is maxi-
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Table 1
Comorbidity of Hyperactivity and Physical Aggression
Behavior or group Low Moderate desist High declining Chronic

Probability estimates for joint physical aggression and hyperactivity model

Physical aggression .283 425 253 .039

Hyperactivity 220 401 277 102
Probability of physical aggression group conditional on hyperactivity group

Low hyperactivity 1.000 .000 .000 .000

Moderate desist hyperactivity .158 .803 .038 .000

High declining hyperactivity .000 367 594 039

Chronic hyperactivity .000 013 11 275
Probability of hyperactivity group conditional on physical aggression group

Low physical aggression 777 223 .000 .000

Moderate desist physical aggression .000 758 239 .003

High declining physical aggression .000 .062 .652 .286

Chronic physical aggression .000 .000 278 722
Joint probability of hyperactivity and physical aggression trajectory group

Low physical aggression 223 .063 .000 000

Moderate desist physical aggression .000 332 .101 ) .001

High declining physical aggression .000 .016 .165 .072

Chronic physical aggression .000 002 025 011

mized for the purpose of model estimation is provided
in the Appendix. First, the statistical model underly-
ing the estimation of a group-based trajectory model
for a single behavior is summarized. For an in-depth
discussion of the estimation of the univariate trajec-
tory model, see Nagin (1999). The approach used to
link two univariate models to form a joint model is
then described.

A developmental trajectory describes the develop-
mental course of a behavior over age or time. The
group-based model assumes that, as an approxima-
tion, the population is composed of a mixture of
groups with distinctive developmental trajectories
(Land, McCall, & Nagin, 1996; Nagin & Land, 1993;
Nagin & Tremblay, 1999). However, at the level of
the individual trajectory group, membership is not ob-
served. Thus, individual level data cannot be sorted ex
ante for the purpose of estimating each group’s tra-
jectory. Instead, the estimation procedure, which is
based on mixture modeling, identifies the shape of the
trajectory for each group and the proportion of the
population that constitutes each such group.

The technical specifics of the statistical model used
to identify and estimate the trajectory groups depend
on the form of the response variable under investiga-
tion. For a count variable, it is assumed that the data
are generated by an underlying Poisson process, in

which the Poisson rate parameter for each group j
comprising the population follows up to a third-order
polynomial in age:

log(N,) = B + BiAge, + BhAge; + BiAge;,

where N, is individual i’s rate of the behavior of in-
terest at time ¢ conditional on membership in group j,
and Age;, Age;, and Age3 are, respectively, subject i’s
age, age squared, and age cubed at time z.'? The

' The model does not require that all individuals be the
same age at each assessment period . For example, the
model can accommodate data from an overlapping cohort
design. Thus, age is not synonymous with time. An alter-
native formulation of a trajectory is in terms of time. In this
formulation, it is important that time be measured from a
natural starting point like commencement of treatment for
depression. Otherwise, a trajectory in time is not interpret-
able.

2 As described in Jones, Nagin, and Roeder (in press), the
Poisson-based model for count data is embedded in the
more-general Zero-Inflated Poisson. As implied by its
name, this generalization of the Poisson model includes a
“zero-inflation™ factor to account for the possibility of a
greater frequency of zero realizations than is predicted by
the standard Poisson distribution. Because our focus is on
group-based modeling not on the analysis of count data, for
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model’s coefficients, 3}, B}, B4, and B, determine the
shape of the trajectory and are superscripted by j to
denote that the coefficients are not constrained to be
the same across the j groups.® This absence of con-
straint is key. It allows each group’s trajectory to have
a distinct shape. Thereby, the model has the capacity
to capture unusual mixtures of developmental trajec-
tories in the population.

For psychometric scale data, which is commonly
censored at scale minimums and maximums and for
binary data (e.g., accident or not in period ), we as-
sume that the data for each group j are being gener-
ated by an underlying latent variable, y¥/, where

y¥ = Bj+ BlAge, + BhAgel + BhAgel + €,

For the censored normal model, € is a disturbance
assumed to be independently normally distributed
with zero mean and constant variance o>. For the
binary model, it is assumed to follow the extreme
value distribution, which underlies the logistic distri-
bution (Maddala, 1983).

In the case of the censored normal latent variable,
y#/ is linked to its observed but censored counterpart,
¥,,, as follows: Let S ;, and S,_,,, respectively, denote
the minimum and maximum possible score on the
measurement scale. The model assumes

Yir = Srmin if yfi< Sinins

yit=yi;:(j if Smin = yz;‘}s Smaxv
and

Yir = Smax if szJ> Smax'

For binary data, the observed quantity, which is again
denoted by y;,, the model assumes that y, = 1 if y*/
> 0 and equals O otherwise.

Key outputs of the univariate model are estimates
of the coefficients defining the shape of the trajectory
for each group j and also of 7/, the proportion of the
population belonging to each group j. These are also
included among the outputs of the joint model. The
key additional output of the joint model is the esti-
mation of probabilities linking the two behaviors un-
der investigation.
~ Formally, let Y! and ¥? denote the two longitudinal

series of measurements for each individual i that are
to be modeled in a joint trajectory format, where ¥' is
measured over T periods, ¥? is measured over T2

ease of exposition we use the more familiar Poisson distri-
bution.

periods, and the index i designating the individual has
been suppressed for notational convenience. Note that
the model does not require that measurements be con-
temporaneous or that the length of the measurement
period be the same (i.e., T' # T?). For example, in an
illustration of heterotypic continuity described below,
oppositional behavior and property delinquency were
measured over two age intervals of differing length
and were also partially overlapping: 6-15 years old
and 11-17 years old, respectively. Moreover, the form
of the data need not be the same for the two series.
The joint model can accommodate any combination
of censored normal, count, or binary data across the
two measurement series under investigation.

Figure 1B suggests two conceptual models for join-
ing the trajectories for ¥' and Y2 For heterotypic
continuity, we are interested in linking an earlier be-
havior denoted by x (e.g., childhood opposition) with
a later behavior denoted by z (e.g., adolescent prop-
erty delinquency). Let j and & index the trajectory
groups associated with behaviors x and z, respec-
tively. Formally, we are interested in estimating the
conditional probability of transiting to trajectory &
(e.g., a trajectory of chronic property offending in
adolescence) given membership in trajectory group j
(e.g., a trajectory of chronic opposition in childhood).
This probability is denoted by V.

For comorbidity analysis, the arrows linking behav-
iors x and z are double headed to suggest an interest in
measuring their joint occurrence. Angold et al. (1999)
emphasize the importance of measuring both 7*V
(e.g., the probability of chronic childhood physical
aggression given chronic childhood hyperactivity)
and the converse conditional probability 7/ in de-
scribing comorbidity. In addition, the joint probability
of belonging to both trajectory groups (e.g., following
trajectories of chronic hyperactivity and chronic
physical aggression) is of interest. This probability is
denoted by 7/,

As it turns out, these two alternative representations
of the joint occurrence of trajectory groups are ana-
lytically equivalent. Specifically, the likelihood func-
tion can be specified such that the direct output of
estimation are either estimates of (a) w/* forj = 1, 2,
....Jandk =1,2,... Kor(b) w/ and 7V forj =
1,2,..,Jand k = 1,2,..., K* These two alter-

> In principle, any order polynomial of age can be used to
model A¥, subject to identifiability.

* As discussed in the Appendix, an equivalent version of
the second parameterization is in terms of = and =%,
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natives are formally equivalent because if we know

m/* we can calculate /, 7 % and /¥ as follows:
w= >k j=1,.,0 )
k
. 1Tjk
= —, )
ey
= D>k k=1,....K 3)
J
and
ot
= — @
v

Alternatively, if we know 7/ and =%, we can calcu-
late 7, 7%, and m* as follows:

k= gMigd (5)
= Dmnl k=1, K (6)
J
and
) ot
/L
T T g Q)

We bring these calculations to the reader’s attention
not only to make clear that the “comorbidity” and
“heterotypic” models are analytically equivalent mod-
els but also because the calculations themselves can
be usefully employed in analysis; a point we hope to
demonstrate in the next section where we provide
illustrative applications. In both these illustrations, we
use the second, “heterotypic continuity” parameter-
ization in estimation and thus use Equations 5-7 to
calculate other probabilities of interest.

Two Illustrative Examples

In this section, the application of the joint models is
illustrated with two examples. The first is a joint tra-
jectory model of the comorbidity of hyperactivity and
physical aggression. The second is a joint trajectory
linking childhood opposition to adolescent property
delinquency. An SAS-based procedure for estimating
joint models such as these is available by request.
This procedure extends the univariate trajectory esti-
mation software described in Jones, Nagin, and
Roeder (in press).

‘Both examples use data from a Montreal-based pro-

spective longitudinal study. This study tracks 1,037
white males of French ancestry. Subjects were se-
lected in 1984 from kindergarten classes in low-
socioeconomic Montreal neighborhoods. Following
the assessment at age 6, the boys and other informants
were interviewed annually from ages 10 to 17. As-
sessments were made on a wide range of factors.
Among these were physical aggression, hyperactivity,
and opposition, which were measured at age 6 and
annually from ages 10 to 15, based on teacher ratings
using the Social Behavior Questionnaire (Tremblay,
Desmarais-Gervais, Gagnon, & Charlebois, 1987).
Physical aggression was assessed with three items:
kicks, bites, hits other children; fights with other chil-
dren; and bullies or intimidates other children. Its
minimum and maximum scores are, respectively, 0
and 6. Hyperactivity was assessed with two items:
squirmy, fidgety; does not keep still. Its minimum and
maximum scores are 0 and 4. Opposition, which
ranges from a score of 0 to 10, was measured by
teacher ratings of five items: does not share materials;
irritable; disobedient; blames others; and inconsider-
ate. The property offense scale, which was based on
self-reports of activity over the past year, included the
following items: stealing from a store, keeping objects
worth more than $10, stealing something worth more
than $100, entering without paying admission, steal-
ing money from home, stealing a bicycle, stealing
something worth between $10 and $100, buying sto-
len goods, being in an unauthorized place, and break-
ing and entering (Nagin & Tremblay, 1999).

Example 1: Comorbidity Analysis

Much research has documented the overlap of
physical aggression and hyperactivity in children (An-
gold et al., 1999; Hinshaw, Lahey, & Hart, 1993;
Hinshaw, Zupan, Simmel, Nigg, & Melnick, 1997,
Kerr, Tremblay, Pagani-Kurtz, & Vitaro, 1997; La-
hey, McBumett, & Loeber, in press; Tremblay,
Maisse, Pagani, & Vitaro, 1996). This example is in-
tended to illustrate how a joint trajectory analysis can
illuminate the nature of this overlap by measuring it
from a dynamic perspective.

Figure 2 reports a joint trajectory model of the co-
morbidity of physical aggression and hyperactivity
among the subjects of the Montreal study. Figure 2A
and 2B report the trajectory model for physical ag-
gression and hyperactivity, respectively. For both of
these psychometric scales, the censored normal dis-
tribution is used to model the trajectories to account
for the censoring at the lower and upper bounds of the



24 NAGIN AND TREMBLAY

scale. A discussion of model selection, the optimal
number of groups and the order of the polynomial
characterizing each group, follows in a separate sec-
tion. ’

The trajectories for hyperactivity and physical ag-
gression are very similar. For both behaviors, there
is a group called “lows,” whose individuals rarely
display the behavior. A second group is best charac-
terized as moderate-level desisters. At age 6, they
manifested modest levels of the behavior, but by ages
10-12 they have largely desisted from displays of that
behavior. A third group, called “high-level decliners,”
start off scoring relatively high on the problem be-
havior at age 6, but by age 15 score far lower. Finally,
there is a group of chronics that start off scoring high
on the behavior and continue to score high throughout
the observation period.

The first part of Table 1 reports estimates of the
probability of membership in each trajectory group.
As previously noted, one such set of marginal prob-
abilities estimates, 1/, emerges directly from estima-
tion. Estimates of the marginal probabilities for the
other behavior, % can be calculated by Equation 6
based on the estimates of 7Y and =’ produced di-
rectly from model estimation. For both hyperactivity
and physical aggression, group membership prob-
abilities are about the same: 20%-30% for the lows,
approximately 40% for the moderate-level desisters,
25%-30% for high-level decliners. and 5%-10% for
the chronics.

Thus far, the analysis suggests that hyperactivity
and physical aggression follow nearly identical devel-
opmental courses. However, the comorbidity prob-
abilities reported in Table 1 suggest the overlap in
their developmental courses is not nearly complete.
Specifically, two sets of conditional probabilities are
reported: (a) the probability of membership in each of
the physical aggression trajectories conditional on
membership in a given hyperactivity trajectory group
(second part of Table 1), and (b) the converse set of
probabilities for each hyperactivity group conditional
on a given physical aggression group (third part of
Table 1). In addition, estimates of the joint probabili-
ties of trajectory group membership are reported in
the fourth part of Table 1. The probabilities in the
third part of Table 1 were calculated with Equation 7
and those in the fourth part with Equation 5.

Both sets of conditional probabilities show a high
level of overlap in similar counterpart trajectory
groups. This is suggested by the generally large di-
agonal elements of the probability matrices in the

second and third parts of Table 1, which indicate
substantial comorbidity. Still there are important
differences, particularly for the extreme groups.
Nearly 100% of those in the low-hyperactivity group
are estimated to belong to the low-physical-
aggression group. By contrast, it is estimated that 22%
of those in the low-physical-aggression group belong
to the moderate hyperactivity group. Thus, while vir-
tually all low-hyperactivity boys are also low-
physical-aggression boys, included among the low-
physical-aggression boys is a sizeable minority of
moderately hyperactive boys. This suggests that an
observation of low hyperactivity is synonymous with
low physical aggression, but that the reverse is not
necessarily true. Some children who are not physi-
cally aggressive may nonetheless display modest hy-
peractivity. Similarly, when considering the chronic
trajectories, only 28% of the chronic-hyperactive
group are also members of the chronic-physical-
aggression group. By contrast, 72% of the chronic-
physical-aggression group are estimated to belong to
the chronic-hyperactive group. Thus, most chronically
physically aggressive boys are also chronically hyper-
active; however, the reverse is not necessarily true—
most chronically hyperactive boys are not chronically
physically aggressive. Combined, these results sug-
gest that the overlap between physical aggression and
hyperactivity is complex. Low hyperactivity predicts
low physical aggression better than low physical ag-
gression predicts low hyperactivity. However, at high
levels of these behaviors the reverse is true. Chronic
physical aggression better predicts chronic hyperac-
tivity than chronic hyperactivity predicts chronic
physical aggression.

The fourth part of Table 1 reports the joint prob-
abilities of trajectory group membership. Due to the
high comorbidity of these two externalizing behav-
iors, most of the probability mass is concentrated on
the diagonal elements of the matrix. The modal group
is composed of those belonging to the two moderate
desisting trajectory groups. This group accounts for
33.2% of the population. In total, 61.8% belong to
trajectory groups that are low or moderate on both
behaviors. In contrast, only 1.1% are estimated to fol-
low a joint trajectory of both chronic physical aggres-
sion and chronic hyperactivity.

Example 2: Heterotypic Continuity Analysis

In this example, a joint trajectory model is esti-
mated to examine the heterotypic continuity between
opposition and property offending. As discussed in
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Nagin and Tremblay (1999), a key question in devel-
opmental criminology is whether there is a single
pathway to all criminal behavior (e.g., Gottfredson &
Hirschi, 1990) or multiple pathways. Loeber and
colleagues (Loeber, 1991; Loeber et al., 1993) pro-
pose a multiple pathway model in which different
childhood developmental pathways lead to different
types of offending in adolescence and adulthood. One
such developmental pattern is a covert behavior-
problem pathway that starts with minor problems such
as lying, which leads to property damage, and is then
followed by serious covert delinquent acts, such as
fraud and burglary. The joint model of opposition and
property delinquency is intended to explore this link-
age.

Specifically, this analysis relates trajectories of op-
position from ages 6 to 15 to trajectories of property
delinquency from ages 11 to~17. Figure 3A displays
four trajectories of opposition. Accompanying prob-
abilities of group membership are reported in Table 2.
The opposition trajectory groups are very similar to
those for hyperactivity and physical aggression both
in terms of their shapes and group membership prob-
abilities: a low group, a moderate desisting group,
a high declining group, and a chronic group that

25

are respectively estimated to account for 25%, 46%,
24%, and 5% of the population. Figure 3B reports
six distinct trajectories of property delinquency. One
group, which we call lows, comprise about 30% of
the population. This group has a rate of offending that
is near zero over the entire observation period, which
indicates that they engage in virtually no property
delinquency. Three of the group trajectories are rising
steadily. One of these, the rising chronics, is small
in size, an estimated 5.9% of the population, but fol-
lows a very interesting trajectory for delinquency re-
searchers—it starts high and rises steeply to a very
high level. The other two, the low-rising 1s and 2s,
start near zero, with the low-rising 2s rising to a dis-
tinctly higher level than do the low-rising 1s. Both of
these are examples of late-onset property delin-
quency. Combined, they are estimated to comprise
41.3% of the population. The remaining two trajec-
tory groups display greater stability, although both
show some clear evidence of decline. One group, the
“medium decliners,” accounts for an estimated 14.6%
of the population. The other group, labeled “medium
chronics,” comprise an estimated 7.3% of the popu-
lation.

Table 2 reports transition probabilities linking these
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Figure 3. A: Trajectories of opposition: Ages 6 to 15. B: Trajectories of property delinquency: Ages 11 1o 17.
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Table 2

Property Delinquency Group Membership Probabilities Conditional on Opposition Group Membership

Property delinquency group

Medium Rising Medium
Opposition group Low Low-Rising 1 Low-Rising 2 declining chronic chronic
Low 532 259 .084 .093 .009 .023
Moderate desist 274 280 173 158 051 .064
High declining 164 222 191 .189 .110 124
Chronic 204 245 164 087 160 139

two sets of developmental trajectories.’ Observe that
a majority of the low-opposition boys are in the low-
property delinquency trajectory group (.532), whereas
the probability of a boy in the chronic group following
this trajectory is only .204. By contrast, the chronic-
opposition group has a combined probability of .299
(=.139 + .160) of following the rising chronic or
medium-chronic trajectories, whereas for ‘the low-
opposition group this probability is only .03. Thus, as
argued by Loeber and colleagues (1993), opposition
has a clear linkage to property offending. Still, the
link falls far short of certainty. Nearly half of the
low-opposition boys follow one of the five more-
elevated property delinquency trajectories, and more
than 10% follow the three most elevated trajecto-
ries—the low-rising 2, rising chronic, or medium-
chronic trajectories. On the other hand, not all the
chronic boys engage in high levels of property delin-
quency—about 45% follow the low or low-rising 1
trajectories.

Model Selection

One of the most technically challenging problems
in mixture modeling is determining the optimal num-
ber of groups to include in the model. One possible
choice for testing the optimality of a specified number
of groups is the likelihood ratio test. The likelihood
ratio test is only suitable for model selection problems
in which the alternative models are nested linear sub-
spaces. In mixture models, a & group model is not a
nested linear subspace of a k + 1 group model, and,
therefore, it is not appropriate to use the likelihood
ratio test for model selection (Erdfelder, 1990; Ghosh
& Sen, 1985; Titterington, Smith, & Makov, 1985).
Instead, use of the Bayesian Information Criterion
(BIC) is recommended as a basis for selecting the
optimal model (D’Unger, Land, McCall, & Nagin,
1998). For a given model, BIC is calculated as

BIC = log(L) = 0.5 = log(n) = (k).

where L is the value of the model’s maximized like-
lihood, » is the sample size, and k is the number of
parameters in the model. Kass and Raftery (1995) and
Raftery (1995) argue that BIC can be used for com-
parison of both nested and unnested models under
fairly general circumstances. When prior information
on the correct model is limited, they recommend se-
lection of the model with the maximum BIC. In this
application, model selection includes not only the de-
termination of the number of groups, but also the
order of the polynomial used to capture the shape of
each trajectory group.

There is, however, one practical complication in
applying BIC to model selection in the joint trajectory
format. The number of models that must be estimated
grows with the square of the number of models that
are considered under the univariate trajectory format.
If N' and N? models are considered for ¥' and Y2
respectively, an exhaustive model search requires es-
timating N' * N? joint models. Instead, it is recom-
mended that model selection be based on searches of
the two univariate model spaces, which thereby re-
duces the number of models searched to N' + N2, The
final joint model is estimated with the number and
shapes of trajectories found to be optimal, based on
the two univariate model searches. Experience has
shown that trajectories emerging from joint estimation
differ little from their univariate counterparts.

Application of the maximum BIC criterion for
model selection generally leads to a clear-cut choice
of the best model. For example, BIC-based calcula-
tions reported in Nagin (1999) strongly support the
four-group physical aggression model shown in Fig-

3 It is also possible to calculate the probability of mem-
bership in each opposition trajectory group conditional upon
membership in each delinquency group. These probabilities
are not reported because they seem less useful given the
temporal sequencing of the behaviors.
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ure 2 being the “best” model. However, in some ap-
plications, the BIC score continues to improve. as
more groups are added. In this circumstance, the ad-
dition of a new group to the model most commonly
results in the splitting of a large group into two
smaller groups with parallel trajectories. This in fact

occurred for the property delinquency trajectory

analysis reported in Figure 3. We stopped at six
groups because the addition of more groups only split
the large groups of low delinquency boys, but left the
high delinquency trajectory groups unchanged. Given
that the latter were of greatest interest, the addition of
more groups was not informative.

Confidence Intervals for Group
Membership Probabilities

An alternative to the joint model for joining trajec-
tories of different measurement series relies only on
the univariate trajectory method. This can be accom-
plished as follows: (a) estimate separate univariate
trajectory models for Y, and Y,, (b) based on the
posterior probabilities of group membership, sort the
estimation sample members into the trajectory groups
that they most likely belong to for ¥; and Y,; and (c)
cross-tabulate the group membership counts to esti-
mate 7Y, 7/%.¢ This approach has two shortcomings
that are avoided by the joint estimation procedure.
First, as described in Roeder, Lynch, and Nagin
(1999), such a “classify-analyze” strategy will not
produce consistent estimates of the above probabili-
ties. Second, it provides no valid basis for computing
the standard errors of the estimates of w*¥, = and
m*. Consequently, it is not possible to calculate con-
fidence intervals for the probability estimates or to
conduct hypothesis tests about the estimates. In con-
trast, the joint model provides consistent and efficient
estimates of all required standard errors.

The only obstacle to calculating confidence inter-
vals with the joint model is a practical one. Specifi-
cally, one must ensure that the estimates of =/ and =*Y
remain in the 0-1 interval. This is accomplished by
estimating 7 and 7Y as multinomial logistic prob-
abilities:

e

T.=
Y
J

and

e'YkL/
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where & and y*¥ are parameters to be estimated.

The downside of this approach is that the estimates
of 7 and w* are nonlinear functions of the parameter
estimates. Therefore, confidence intervals for 7 and
7V are not directly computable by the usual calcula-
tions based on the standard errors of 8/ and y*. Two
alternatives are available for calculating confidence
intervals. One can use the first term of a Taylor Ex-
pansion on the logistic equation above to form an
equation that is linear in the estimated parameters
(Greene, 1990); or one can use the parametric boot-
strap technique, which was used here, to estimate the
standard errors of %/ and #*Y. This procedure, which
was first proposed by Efron (1979), simulates the
sampling distribution of #/ and #*V as follows: (a)
Drawing on the result that 7/ and ¥ are asymptoti-
cally multivariate normally distributed with mean and
covariance (1, 3/) and (7Y, ), respectively, and
that the points estimates themselves are consistent es-
timates of the population quantities, a simulated ran-
dom sample of 10,000 estimates of & and y* is gen-
erated; (b) these estimates are then used to generate
10,000 estimates of 7 and =Y, which, in turn, are
rank ordered to create simulated sampling distribu-
tions of % and #*Y. Thus, a 95% confidence interval
is simply the lower and upper 2.5 percentiles of this
distribution. More generally, this same approach can
be used to calculate confidence intervals for other
more-complicated nonlinear functions such as 7/ #*
= #*

Table 3 illustrates the application of this approach
to the opposition-property delinquency trajectory
model. Point estimates and 95% confidence intervals
are reported for three probabilities of potential interest
to researchers. The first is the probability of belonging
to the chronic-opposition trajectory group, 'rr3°p. The
point estimate of this quantity is .047 with a 95%
confidence interval of .021-.101. Note, unlike the
typical confidence interval, this bootstraped interval is
asymmetric. This asymmetry makes sense because the
point estimate of w°,,, .047, is close to the lower
theoretical bound of a probability, O; therefore, there

® Following model estimation, the parameter estimates
can be used to calculate the probability that each individu-
al's observed pattern of behavior was generated by each
trajectory group. These probabilities are called the posterior
probabilities of group membership.
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Table 3
Confidence Intervals for Various Probabilities: Opposition—Property Delinquency Model
Point 95% confidence
Probability Calculation estimate interval

Chronic opposition o .047 .021-.101

72 = - —

L e+ 4

Chronic or high desister opposition “'7'(3;,, + 7 .290 .236-.353
Chronic opposition and rising chronic AL+ A AD - 014 .005-.033

property or moderate chronic property

is more upside error potential. Also reported is the
probability and associated confidence interval for the
linear sum of two probabilities, the probability of be-
longing to the chronic or high-desister group. This
probability is estimated at .290 with 95% confidence
interval of .239-.353. The third probability quantity is
a joint probability—the probability of belonging to
the chronic childhood-opposition group and then pro-
ceeding to belong to one of the two most theft-prone
groups in adolescence, the rising- and medium-
chronic groups. Like the first example this probability
is small, .014, and consequently, its 95% confidence
interval, .005-.033, is substantially asymmetric. Each
of these illustrative confidence intervals suggests that
despite the large number of parameters estimated in a
joint model, it is still possible to obtain reasonably
precise estimates of important probability estimates.

Strengths and Limitations of a Group-Based
Modeling Approach

Qur statistical depiction of comorbidity and hetero-
typic continuity requires a group-based modeling ap-
proach. Without it, we would not be able to probabi-
listically link the developmental course of two
different behaviors. Use of probabilities to character-
ize alternative developmental courses requires the
designation of discrete states of the behaviors—
developmental trajectories. In this respect, our mod-
eling strategy has its roots in the tradition of charac-
terizing comorbidity and heterotypic continuity with
odds ratios rather than correlations. Use of the odds
ratio also requires the creation of behavioral states
such as highly anxious or a diagnosis of depression.

As discussed in Nagin (1999), Nagin and Land
(1993), and Nagin and Tremblay (1999), the assump-
tion that the population is composed of distinct groups
is unlikely to be strictly correct. Instead, the groups
are intended as an approximation of an underlying

continuous process. In so doing, we adopt a standard
procedure in nonparametric and semiparametric sta-
tistics of approximating a continuous distribution
from a discrete mixture (Follman & Lambert, 1989;
Heckman & Singer, 1984; Lindsay, 1995; Manski,
1995).

This statistical approximation has its analog in the
taxonomic-based theories that are quite common in
developmental psychology. Examples include theo-
ries of personality development (Caspi, 1998), drug
use (Kandel, 1975), learning (Holyoak & Spellman,
1993), language and conceptual development (Mark-
man, 1989), development of prosocial behaviors such
as altruism, and development of antisocial behaviors
such as delinquency (Loeber, 1991; Moffitt, 1993;
Patterson, DeBaryshe, & Ramsey, 1989). Taxonomic
theories predict different trajectories of development
across subpopulations, but the purpose of such tax-
onomies is generally to draw attention to differences
in the causes and consequences of different develop-
mental trajectories within the population rather than to
suggest that the population is composed of distinct
groups.

The idea of using groups to approximate a continu-
ous distribution is easily illustrated with an example.
Suppose Figure 4A depicts the population distribution
of some behavior z. In Figure 4B, this same distribu-
tion is replicated and overlaid with a histogram that
approximates its shape. This panel illustrates that any
continuous distribution with finite endpoints can be
approximated by a discrete distribution composed of a
finite number of “points of support” (i.e., the shaded
“pillars™). For any given number of points of support,
maximum likelihood estimation can be used to esti-
mate two sets of parameters. The first identifies the
location on the horizontal axis of each point of sup-
port. In Figure 4, these points are denoted by Z,, Z,, Z3.
.. ., where 7, measures the “average” behavior of in-
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Figure 4. Using groups to approximate a continuous distribution. A: An unknown continuous distribution. B: An unknown
continuous distribution approximated by a finite number of points of support.

dividuals at the jth point of support. A second set of
parameters measure the proportion of the population
; at each point of support. These proportions must
sum to | but in general will not be equal. If a time-age
dimension were added to Figure 4 to measure the
developmental trend of Z, each of these points of
support would correspond to the trajectory groups de-
picted. For example, in Figures 2 and 3, the estimates
of m; would correspond to the proportion of the popu-
lation whose developmental trajectory is best approxi-
mated by group j.

When is a group-based approach a useful approxi-
mation of an underlying continuous phenomenon?
The answer to this question depends on many issues
but we emphasize two here. First, if the behavior
under study is reasonably approximated by a known
continuous distribution that is also tractable (e.g.,
the multivariate normal distribution), an analysis
based on that distribution is obviously the prefer-

red approach. Alternatively, if a suitable continuous
distribution is not known or tractable, the group-
based, semiparametric approach is an attractive alter-
native.

A second and related rationale for group-based
modeling is that it is well suited for the study of a
behavior that does not vary regularly throughout the
population, but instead tends to reveal itself in mark-
edly different intensities in clusters of individuals.
Figure 5 displays two contrasting possibilities. In Fig-
ure S5A, the behavior varies uniformly across the
population, whereas in Figure 5B there are two dis-
tinct modes of behavior. A group-based modeling ap-
proach makes little sense for the behavior depicted in
Figure 5SA—there are no distinct groups. However, for
the behavior in Figure 5B, it makes a great deal of
sense because of the bimodality of the behavior. A
two-group model would capture the clusters at each
mode.
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Figure 5. Two hypothetical examples of the population
distribution of a behavior. A: Uniformly distributed behav-
ior. B: Bimodally distributed behavior.

The examples in Figure 5 are in one dimension. In
one dimension, clear-cut evidence of clustering re-
quires unusual examples such as bimodality. How-
ever, trajectories of development are in two dimen-
sions—Behavior x Time. In this circumstance, the
possibilities for distinctive groups of trajectories are
not hard to imagine. As previously noted, develop-
mental psychology is filled with examples of theories
predicting distinctive patterns of development. We
make this point because the real world is mostly com-
posed of phenomena in which clustering or regular
variation is not clear-cut, particularly if a time dimen-
sion is a component of the analysis.

Our experience with model selection for the prop-
erty delinquency illustrates this ambiguity. On the one
hand, the group-based strategy was successful in iden-
tifying distinctive trajectories of serious property de-
linquency that would be difficult to identify with
modeling approaches based on continuous distribu-
tions. These groups are the two-dimensional analog of
the Figure 5B distribution. On the other hand, the
group-based modeling strategy successively split
moderate-level delinquency trajectory groups into
similar parallel groups. For these groups, trajectories
varied more regularly in the population. Such groups
are the two-dimensional analog to the Figure 5A dis-
tribution. This example illustrates that the choice be-

tween the multinomial modeling strategy that under-
lies the group-based approach and the modeling
strategy based on a multivariate continuous distribu-
tion will rarely be clear cut ex ante. Only the analysis
can reveal whether variation is highly regular or clus-
tered into distinctive groups or both.

The successive splitting of the moderate-level de-
linquency groups also provides a concrete illustration
of a fundamental statistical problem that attends to
using a finite number of support points to approximate
a continuous distribution. Perfect conformance to the
distribution requires an infinite number of points of
support. Thus, even though statisticians have made
important progress in demonstrating the utility of the
BIC in identifying the optimal number of groups in
mixture problems, this theoretical work begins with
the assumption that the population is composed of a
finite, albeit unknown, number of groups.

Thus, it must be recognized that unless one holds to
the position that the population is strictly composed of
discrete groups, use of any goodness-of-fit measure,
BIC, or otherwise, will not formally identify the cor-
rect model. We do not hold the view that the popu-
lation is strictly composed of distinct groups. One
practical consequence of this view is that as sample
size increases, models will tend to include more
groups because ever more information will become
available for identifying more subtle features of the
response surface.” However, in our view, this is not a
fatal shortcoming of semiparametric or nonparametric
modeling strategies such as that used here. Rather, it
is a frank acknowledgment that al/l/ models are ap-
proximations and thus, literally speaking, incorrect.
Still more work is needed for developing methods to
calibrate the adequacy of group-based models. Such
methods should include not only mathematical statis-
tical criteria but also visual representations of the
response surface.

One of psychometrics’ most important contribu-
tions to statistical theory was the development of
methodology for linking test items responses to latent
constructs such as intelligence. Structural equation
modeling has its roots in this tradition. The modeling
strategy used here and the predecessor work on uni-

7 Note, however, that D’Unger et al. (1998) found that the
optimal number of groups as determined by BIC was largely
insensitive to sample size. This finding reflects the fact that
BIC’s penalty for adding more parameters grows with
sample size.
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variate trajectory estimation are not in this tradition.
Instead, it is rooted in the classical statistical and
econometric tradition in which the quantity to be mea-
sured is the quantity of interest. Thus, in the model
section, the term latent variable was used to describe
y;*¥ because it is not fully observed. This use of the
term “latent” is different from that in the psychomet-
ric literature, in which the term larent factor refers to
an unobservable construct that is assumed to give rise
to multiple manifest variables. Thus, within the for-
mal structure of the model, we do not attempt to for-
mally link the response variable to some more funda-
mental but not directly measured construct.

The primary advantage of this approach is that it
helps streamline the statistical model. This is a critical
advantage because the model is already complex. Fur-
thermore, we suspect that adapting this modeling
framework to a structural equation modeling frame-
work would make it difficult to retain two key
strengths of the framework—the flexibility to handle
a variety of different data types and to accommodate
missing data.

Balanced against these advantages are obvious
limitations. The modeling framework provides no for-
mal basis for combining items intended to be indica-
tors of an unobserved latent construct and does not
provide the capacity to explicitly account for mea-
surement error. For an excellent account of the appli-
cation of structural equation modeling methods to
group-based modeling, see Muthén and Muthén
(1999).

Conclusion

This article has demonstrated a group-based
method for joining developmental trajectories of dis-
tinct but theoretically related behaviors. The objective
was to provide a method that improves on conven-
tional approaches for measuring comorbidity and het-
erotypic continuity. The principal advantages of this
approach are as follows: (a) It links the entire devel-
opmental course of the two behaviors of interest
rather than relating single measurements of each be-
havior made at a particular time—in so doing, the
method makes use of all the data assembled over the
course of the longitudinal study; (b) it provides three
readily interpretable metrics for describing comorbid-
ity and heterotypic continuity, 7", 7/, and =*; and
(c) the group-based method is specifically intended
for problems in which theory or practice suggests dis-
tinctive developmental courses within the population.

As the examples illustrate, the joint model is well
suited for assessing population heterogeneity in the
form of the comorbidity or heterotypic continuity un-
der study.

A particularly valuable next step in the develop-
ment of the joint model methodology is generalizing
the specification of 7*” to incorporate covariates. This
generalization has already been demonstrated for the
univariate model (Nagin, 1999; Roeder et al.. 1999).
The obstacle to adding covariates to the joint model is
developing a workable approach to limit the number
of parameters to be estimated. Consider the opposi-
tion-property delinquency model, which includes four
opposition trajectories and six delinquency trajecto-
ries. Without any constraints on the specification of
¥, 20 (= 4 * (6 - 1)) parameters would be required
for each covariate. This is plainly too many, and ac-
tual experience confirms this prediction—the standard
errors of the estimated parameters are extremely
large. Thus, as a practical matter, the fully general
model is not identified, except perhaps in extremely
large data sets. A much more constrained but still
sensible model is required.
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Appendix

Specification of Likelihood Function

This appendix specifies the form of the likelihood func-
tion used to estimate the joint trajectory model. Given that
the joint model is an elaboration of the univariate model, we
begin with a brief summary of the form of its likelihood
function. For.each individual i, the likelihood of observing

the longitudinal sequence of behavioral measurements, Y, -

= {¥i» Yiz» Yias - - » Y17}, denoted by P(Y)), is specified as
a mixture of J underlying latent groups:

P(Y) = 2w/PAY),

J

where P/(Y,) is the probability of Y, given membership in
group j and 7 is the probability of group j. As described in
the main text, the form of P/(Y,) is selected to conform with
the type of data under analysis. In work to date, the Zero-
Inflated Poisson distribution has been used in the analysis of
count data, the censored normal distribution in the analysis
of psychometric data, and the logit distribution in the analy-
sis of binary data. See Jones et al. (in press) or Nagin (1999)
for a full discussion of these alternatives. The basic model
also assumes that conditional on membership in group j, the
random variables y,, are independent. Thus,

-
PY) =T 1P*.).

The assumption of conditional independence is a strong
one, but not nearly as strong as it may seem at first blush. As
described in the main text, the parameters of the polynomial
defining each trajectory group are allowed to vary freely.
Thus, in the population, individual-level behavior will be
correlated over time even though within-group, it is inde-
pendent over time. Thus, the model does conform with the
empirical reality that at the population level there is serial
correlation in behavior. Further, we note that the standard
fixed or random effect model generally assumes that con-
ditional on the fixed or random effect (and other relevant
covariates), individual-level behavior is independent over
time. In principle, the conditional independence assumption
could be relaxed to allow for within-group serial correlation
in behavior, but the cost in terms of complexity would be
considerable.

The joint trajectory model builds from the univariate
model as follows: Let Y' and ¥ denote the two longitudinal
series to be modeled in a joint trajectory format, where Y' is
measured over T' periods, ¥? is measured over 72 periods,
and the index i has been suppressed for notational conve-
nience. We continue the maintained assumption of condi-
tional independence given group membership. Thus,

T
Fay =TT

and

Ta

WP = [ 102,

‘where f(*) and h(*) are suitably defined probability distri-
butions given the form of the data.

We next add a new layer to the conditional independence
assumption with the assumption that conditional on j and £,
Y' and Y? are independently distributed, P/4(Y'.Y?) =
F(Y"Yh’(Y?). Thus, the unconditional likelihood function of
" and ¥ sums across P (Y, Y?), with each such conditional
distribution weighted by the joint probability of membership in
trajectory group j for Y' and trajectory group k for Y2, m/*:

PP = D > Ay iy A
J K

An alternative and equivalent form of the likelihood func-

tion builds from the result that /% = 7/, Thus,

P(Y'P?) = 3, D aimifi(Y ()
7k
= D (Y D Rk (r).
7 k

The reader will observe that this second likelihood func-
tion has a sequential construction—each group j of Y' is
linked to each group k of Y2 via a conditional probability
Y. For problems in which Y' temporally precedes Y, this
formulation is natural. However, regardless of temporal se-
quence, still another equivalent formulation conditionally
links each group & to each group j via the conditional prob-
ability /%, For this formulation, the likelihood function for
each individual { is:

P(Y' Y = 'Ew*'[ KA YZ)wa"‘fj(Y')].
k J

Al Brame et al. (in press) use a distinctly different ap-
proach. Instead of linking trajectories across Y' and Y? via
«*, the univariate approach is expanded by estimating tra-
jectories groups that combine parameters for each behavior.
Specifically in this formulation a group is defined by three
sets of parameters, ", B'™, and B>", where m indexes the
combined trajectory, ™ is the proportion of the population
in each combined group, and B'™ and B> are vectors of
parameters specifying the shape of group m’s trajectory for
behaviors Y' and Y2, respectively. For this formulation, the
form of the likelihood function for a given individual i is
PYLYH =3 am 7 (YR,
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